
	 	 SQL	IQUERY	SCRIPT	
The	Modern	SQL	Language	for	IBM	i	
©	Copyright	2023	–	R.	Cozzi,	Jr.	All	rights	reserved.		

First	Ed.	Jan	2023	

2	

THINKING	IN	SQL	
As	IBM	i	developers	we	often	tend	to	think	of	solutions	by	considering	how	we	can	
solve	a	problem	using	RPG	IV	or	CL.	With	SQL	iQuery	and	even	with	RPG	IV	and	
embedded	SQL	we	developers	need	to	starting	Thinking	in	SQL™		

This	means	considering	a	data-centric	approach	to	problem	solving.	Rather	than	
treat	the	data	as	a	repository	that	needs	to	be	read	and	then	processed,	think	of	
how	to	extract	the	results	you	need	for	your	endgame.	That	is,	let	the	database	
query	engine	do	the	work	for	you.	

With	few	exceptions,	legacy	applications	that	only	process	data	can	be	
refactored/modernized	so	that	they	only	use	SQL	and	specifically,	SQL	iQuery	
Script.	In	addition,	generating	classic	Reports	for	end-users	can	also	be	produced	
using	SQL	iQuery	Script.	In	fact,	iQuery	Script	is	the	only	way	I	create	reports	for	an	
end-user	today.	I	haven't	written	an	RPG	print	program	for	report	purposes	in	10	
years.		

Scenario	1:	
The	sales	executive	needs	a	report	showing	sales	by	region	and	summarized	by	
sales	representative	within	that	region.	Of	course,	they	want	an	interactive	(classic	
Inquiry)	result	as	well	as	a	print	option	to	produce	the	report.		

You	start	building	an	RPG	IV	with	DDS	for	the	Display	file	application.	After	a	couple	
weeks	you	deliver	the	application	to	the	end-user.	They	use	it	for	a	week	or	two	and	
then	state,	"What	I	really	want	is	this	information	in	Excel,	can	you	do	that?"	

Scenario	2:	

The	Purchasing	department	would	like	a	consolidated	report	containing	the	sales	
for	certain	items	across	all	distribution	centers.	This	requires	that	you	pull	in	data	
from	remote	IBM	i	partitions.	So,	you	spend	several	weeks	building	CL	programs	to	
prompt	them	for	the	items	and	pull	in	the	data	from	each	remote	partition/server,	
create	RPG	or	perhaps	OPNQRYF	consolidation	routines,	and	build	a	cool	looking	
DDS-based	PRTF	Report	for	them.		

After	delivering	this	awesome	solution,	they	ask	if	they	can	get	it	delivered	via	
EMAIL	and	in	Excel	format.		

3	

Scenario	3:	Thinking	in	SQL	

When	an	end-user	has	a	request	for	an	inquiry	program	or	report,	you	should	
anticipate	that	the	end-product	requirements	will	evolve	after	they	use	it,	or	in	
some	cases	before	you	deliver	it.	If	you	start	the	design	phase	by	thinking	in	SQL	
you	end	up	with	a	flexible	outcome	that	can	easily	adapt	to	a	fluid	situation.		

For	example,	in	scenario	1,	above,	if	you	created	the	report	using	SQL	iQuery	script,	
when	the	end-user	changed	the	requirements	to	Excel	output,	you	could	have	
change	the	output	parameter	to	OUTPUT(*EXCEL)	or	embedded	it	into	the	iQuery	
Script	using	the	#DFTOUTPUT	EXCEL	directive.	

4	

SQL	IQUERY	SCRIPT	USERS	GUIDE	
This	document	describes	the	SQL	iQuery	Script	syntax	and	development	process.	It	
does	so	from	the	perspective	of	an	IBM	i	RPG	IV	programmer.	The	reader	does	not	
need	to	be	an	advanced	RPG	IV	developer,	but	references	to	RPG	IV	are	used	for	
context	throughout	this	document.	

RUNiQRY 'select * from qiws.qcustcdt'

	

Resources	

SQL	iQuery	is	available	from	www.SQLiQuery.com	or	it	may	be	used	at	no	charge	on	
the	PUB400.com	portal	on	a	current	IBM	Power	server	running	the	latest	version	of	
IBM	i.	

Uses	
You	can	process	SQL	using	SQL	iQuery	through	any	of	the	following	methods:	

• CL	Command	Entry	
• CL	Programs	
• Source	Members	("Scripts")	
• Web	(CGI	interface)	
• HLL	using	our	proprietary	APIs	(rare)	

5	

In	this	book,	I	will	focus	on	the	first	three	uses	and	specifically	the	use	of	Source	
Members	to	create	SQL	iQuery	Scripts.	But	let's	review	the	first	two	(Command	
Entry	and	CL	programs)	before	continuing.	

Running	SQL	from	Command	Entry	

SQL	iQuery	allows	users	to	run	SQL	statements	from	the	CL	Command	Entry	screen.	
To	do	this	the	RUNiQRY	(Run	SQL	using	iQuery)	CL	command	is	provided.	This	
command	has	all	the	options	needed	to	process	any	SQL	statement	from	command	
entry.		

RUNiQRY 'select * from qiws.qcustcdt'

In	the	above	example,	the	SQL	SELECT	statement	is	used	to	query	the	QCUSTCDT	
file	stored	in	the	QIWS	library.	This	happens	to	be	a	demo	file	shipped	with	the	
operating	system,	so	querying	it	is	probably	allowed	on	your	system.	Note	that	SQL	
iQuery	is	not	intended	to	be	used	to	"compile"	SQL/PL	source	to	create	SQL	
Procedures	or	Functions.	You	should	continue	to	use	the	RUNSQLSTM	or	IBM	ACS	
to	create	SQL	Functions	or	Procedures.	

The	output	from	the	above	SELECT	statement	is,	by	default,	routed	to	the	screen.	
Most	users	today	utilize	IBM	ACS	for	5250	emulation	but	there	are	other	emulators	
out	there,	such	as	the	MochaSoft	TN5250	which	is	widely	used.	

IBM	ACS	users	typically	have	both	*DS3	and	*DS4	modes	available	to	their	5250	
sessions.	For	that	reason,	SQL	iQuery	checks	the	screen	capabilities	and	if	*DS4	is	
supported,	the	output	will	use	the	full	132	characters	and	27	rows	of	the	screen.	

The	advantage	of	using	SQL	iQuery	over	the	native	RUNSQLSTM	CL	command	is	
that	RUNiQRY	supports	the	SELECT	and	WITH	statements,	it	can	process	SQL	
scripts	dynamically;	it	also	directs	the	output	of	a	SELECT	to	any	of	several	IFS	file	
formats	in	addition	to	standard	display	and	print	devices.	

For	example,	using	the	OUTPUT	parameter	of	the	RUNiQRY	CL	command,	you	can	
direct	the	output	to	a	variety	of	media	format	such	as	print,	a	data	area,	Excel,	PDF,	
CSV,	JSON,	raw	text,	and	more.	

6	

Running	SQL	within	CL	Programs	

SQL	iQuery	allows	users	to	run	SQL	statements	within	CL	programs.	Again,	the	
RUNiQRY	CL	command	is	used	to	provide	this	capability.	The	advantage	of	using	
SQL	iQuery	is	that	the	CL	Programmer	can	"see"	the	SQL	statement	that's	being	run.	
Alternatively,	you	can	store	SQL	statements	in	source	file	members	and	run	them	
using	SQL	iQuery:	

RUNiQRY SQL('UPDATE QIWS.QCUSTCDT SET CDTLMT = 0 WHERE BALDUE > 0')

or	

RUNiQRY SRCFILE(prodsrc/qsqlsrc) SRCMBR(UPDCSTBAL)

With	SQL	iQuery,	CL	Programmers	can	embed	the	SQL	statement	directly	into	the	
CL	program.	They	can	dynamically	build	the	statement	with	embedded	CL	variables	
just	like	any	other	CL	*CAT	operation	or	specify	the	entire	statement	as	a	literal.		

There	are	advantages,	however,	when	using	a	Source	File	member	to	store	the	SQL	
statements	you	want	to	run	in	CL	or	elsewhere.	Source	file	members	can	contain	
simple	SQL	statements	or	entire	SQL	iQuery	Scripts.	For	general	single-statement	
use,	however,	RUNiQRY	gives	you	the	advantage	of	being	able	to	specify	the	SQL	
statement	directly.	

Tip: You can redirect the output of a single record SELECT statement to a data area
using SQL iQuery's OUTPUT(*DTAARA) parameter and specifying the data area name
on the OUTFILE parameter. This allows you to then pull in that information using the
RTVDTAARA CL command.

SQL	Source	File	Members	

As	mentioned,	SQL	statements	may	be	stored	in	standard	source	file	members	and	
run	using	the	RUNiQRY	CL	command.	We	call	those	source	members	SQL	iQuery	
Scripts.	The	SQL	statements	in	a	source	member	are	run	in	sequence	by	the	SQL	
iQuery	Script	processor.	The	final	statement	in	the	script,	however,	is	passed	back	
to	the	SQL	iQuery	engine	for	processing	(i.e.,	it	is	returned	to	the	RUNiQRY	
command	for	processing).		

For	example,	suppose	you	have	need	to	run	an	SQL	DELETE	or	UPDATE	statement	
and	then	you	want	a	table	to	be	queried	with	a	SELECT	statement	show	the	results	
in	an	Excel	file.	You	would	use	an	SQL	iQuery	Script	(i.e.,	source	file	member)	to	
store	and	then	run	those	statements.		

7	

01) DROP TABLE QTEMP.PGMREFS;
02) CL: DSPPGMREF PRODLIB/ORD* OUTPUT(QTEMP/PGMREFS);
03) SELECT WHPNAM,WHFNAM,WHLNAM,WHOTYP,WHFUSG
04) FROM QTEMP.PGMREFS;

The	DROP	statement	and	the	CL:	directive	(lines	1	and	2)	are	processed	by	SQL	
iQuery	script.	The	final	statement	(lines	3	and	4)	is	passed	back	to	and	is	processed	
by	the	RUNiQRY	command	as	if	it	were	coded	as	a	literal	on	the	RUNiQRY	command	
itself:	

RUNiQRY SQL(<the last statement>)

This	last	statement,	therefore,	benefits	from	the	various	options	specified	on	the	
RUNiQRY	CL	command,	such	as	OUTPUT,	EMAIL,	Titles,	etc.		

The	only	exception	to	this	last	statement	rule	is	with	nested	scripts.	In	that	context,	
all	statements	in	a	nested	script	source	member	are	run	by	the	SQL	iQuery	Script	
processor.	Nested	SQL	iQuery	Scripts	use	the	#include	directive	to	identify	the	
external	source	member	to	be	included	in	"this"	script.	More	on	this	later	when	I	
cover	nested	scripts.	

SQL	iQuery	Script	is	a	great	way	to	set	up	the	data,	the	output	media,	email	
recipients,	and	other	attributes.		Here	is	a	simple	example:	

Source	Mbr:	MYSTUFF/QSQLSRC(DEMO)	

01) #COLTOTALS 8, 9
02) #NUMEDIT 8, 9
03) #DFTOUTPUT *EXCEL
04) SELECT CUSNUM as "Customer Number",
05) LSTNAM as "Last Name",
06) INIT as "Initials",
07) STREET as "Address",
08) CITY as "City",
09) STATE as "State",
10) DIGITS(ZIPCOD) as "Zip Code",
11) CDTLMT as "Credit Limit",
12) BALDUE as "Balance Due"
13) from qiws.qcustcdt
14) order by lstnam;

The	final	statement	is	the	SELECT	statement	(line	3).	When	that	SELECT	is	run,	it	is	
passed	back	to	the	SQL	iQuery	processor	and	is	run	as	if	it	were	passed	directly	to	
the	RUNiQRY	command	itself.		

Lines	1,	2,	and	3	are	SQL	iQuery	Script	directives.	They	cause	attributes	to	be	set	
and	the	output	media	to	be	selected.				

8	

Line	1	contains	the	#COLTOTALS	directive.	It	identifies	one	or	more	columns	that	
should	be	accumulated.	This	applies	to	output	that	is	printed	or	sent	to	MS	Excel.	
Either	the	relative	column	number	(as	shown	in	this	example)	or	the	actual	column	
name	may	be	specified.	Multiple	column	IDs	are	separated	by	a	comma.	Today,	SQL	
for	IBM	i	supports	OLAP	functions	which	were	not	yet	available	when	SQL	iQuery	
was	created,	so	we	built	#COLTOTALS	into	iQuery	Script.		One	advantage	over	
OLAP	is	that	when	OUTPUT(*EXCEL)	is	used,	it	embeds	the	actual	Excel	sum()	
function	into	the	sheet	(Note:	this	applies	to	native	iQuery	Excel	XLS	output	and	is	
ignored	by	IBM	ACS	Excel	output	options.)	

Line	2	contains	the	#NUMEDIT	directive.	It	identifies	one	or	more	columns	that	
should	have	basic	numeric	editing	applied	to	them.	By	default,	SQL	iQuery	avoids	
thousands	notation	for	numeric	output	(that	is	the	comma	for	most	countries,	and	
period	for	others).	The	#NUMEDIT	directive	applies	a	basic	numeric	edit	to	the	data	
before	it	is	written	to	the	output	media.	For	example,	normally	1234.50	would	be	
written,	but	when	#NUMEDIT	identifies	that	column,	the	value	is	written	as	
1,234.50	instead.	

Line	3	contains	the	#DFTOUTPUT	directive.	It	identifies	the	output	media	to	be	
used	by	default.	This	means	that	if	the	RUNiQRY	command	is	specified	with	no	
output	parameter,	or	with	the	special	value	OUTPUT(*DFT),	then	this	directive	
assigns	OUTPUT(*EXCEL)	as	the	output	media.	If,	however,	the	OUTPUT	parameter	
is	specified	with	any	value	other	than	*N	or	*DFT,	then	#DFTOUTPUT	is	ignored.	
Note:	There	is	also	an	#OUTPUT	directive	that	forces	the	output	media	to	whatever	
is	specified	on	that	directive,	ignoring	the	RUNiQRY	OUTPUT	parameter	entirely.	

Source	Members	

Source	members	are	used	for	SQL	iQuery	Scripts	which	can	contain	any	number	or	
statements	or	"lines	of	code".	Source	members	can	be	any	length	(width).	SQL	
iQuery	Scripts	are	not	limited	to	79	columns.	Note	that	SEU	has	a	hard	limit	of	240	
bytes	for	source	file	record	length.	

When	creating	source	files,	I	tend	to	create	them	with	a	112-byte	record	length	
(100-byte	source	data)	or	max	them	out	at	the	240-byte	SEU	limit	(228-byte	source	
data)	instead	of	the	legacy	92-byte	CRTSRCPF	command	default.	

CRTSRCPF FILE(MYSRC/QSQLSRC) RCDLEN(112)

9	

SQL	iQuery	Script	source	members	can	be	edited	with	any	of	the	tools	available	
today	such	as	SEU,	RDi,	and	Microsoft	Visual	Studio	CODE	using	the	CODE	for	i	plug-
in.	Unlike	SEU,	the	other	editors	do	not	have	a	line-length	limitation.	Also,	if	you	set	
the	SEU	Type	(source	type)	to	SQL,	RDi	and	VS	CODE	render	the	source	code	using	
SQL	syntax	highlighting.	

Column	Headings	

A	quick	note	on	column	headings	of	your	output.	There	are	four	column	(i.e.,	
database	field)	labels	or	headings	associated	with	each	column.	DDS	COLHDG	which	
contain	three	20-byte	column	headings;	DDS	TEXT	which	contain	a	50-byte	text	
description,	DDS	ALIAS	which	contains	up	to	30-bytes	of	a	"long"	column	name,	and	
the	actual	column	name	itself.	This	can	be	assigned	using	SQL	DDL	as	well.	

Db2	for	i	SQL	uses	the	IBM	i	DDS	Column	Headings.	The	COLHDG	keyword	in	DDS	is	
used	to	declare	the	column	headings	used	by	various	tools	such	as	Query/400,	SQL	
iQuery,	STRSQL,	ACS	RUNSQL,	and	QM	Query.	Using	the	SQL	DDL	LABEL	ON	
COLUMN	statement	you	can	set	the	column	heading	text.	In	addition,	when	a	
SELECT	statement	is	run,	when	you	include	a	correlational	name	via	the	"AS"	clause	
for	a	column,	that	correlational	name	is	used	as	column	heading.		

Each	of	the	3-lines	of	column	headings	may	be	specified	on	the	AS	clause	by	spacing	
then	out	in	20-byte	strings.	For	example,	the	Customer	Number	(CUSNUM)	heading	
could	be	specified	as:	

LABEL ON COLUMN QIWS.QCUSTCDT (CUSNUM as 'Customer Number');

In	the	IBM	i	DDS	source	code,	this	would	be	specified	as:	

A CUSNUM 6S 0 COLHDG('Customer' 'Number')

In	a	dynamic	SQL	SELECT	statement	it	would	be	specified	as:	

SELECT CUSNUM as "Customer Number", ...

Each	of	the	3	column	heading	lines	occupies	20	bytes	in	the	database	object.	Only	2	
of	the	3	headings	are	illustrated	above.	To	specify	headings	using	a	runtime	SQL	
SELECT	statement,	you	specify	a	single	string	of	up	to	60	bytes,	with	each	20-bytes	
containing	one	of	the	three	column	heading	components.	However,	unlike	LABEL	
ON	and	the	COLHDG	keyword,	in	this	context	double-quotes	are	used	instead	of	
apostrophes.	Here's	a	more	complete	SELECT	statement	that	uses	the	AS	clause	to	
set	the	Column	Headings:	

10	

01) -- *........1.........2.........3.........4
02) SELECT CUSNUM as "Customer Number",
03) LSTNAM as "Last Name"
04) FROM QIWS.QCUSTCDT ORDER BY CUSNUM;

SQL	iQuery	inserts	the	column	headings	into	the	result	set	for	SELECT	statements	
where	possible.	They	are	used	for	output	to	the	screen/display,	print,	Excel,	CSV	
and	even	JSON.	Other	SQL	tools,	such	as	the	legacy	STRSQL	and	IBM	ACS	RUNSQL	
Scripts	(GUI)	also	use	this	information	for	column	headings.	

SQL	iQuery	Scripting	

The	demo	source	member	illustrated	earlier	is	a	good	example	of	a	simple	SQL	
iQuery	Script.		

SQL	iQuery	Script	has	a	full	set	of	conditional	logic	controls	as	well	as	being	an	SQL	
processor.	That	is,	it	has	IF/ELSE/DO	control	statements	that	work	similar	to	their	
corresponding	RPG	IV	opcodes.	In	fact,	iQuery	Script	logic	controls	are	a	sort	of	
hybrid	of	RPG	IV	and	SQL.	That	is	in	addition	to	traditional	condition	testing,	SQL	
User	Defined	Functions	(UDF)	may	be	used	on	conditional	statements.	For	example,	
you	can	code	the	following:	

01) If EXISTS (Select * from QIWS.QCUSTCDT WHERE BALDUE > 0);
02) Foreach select cusnum, lstnam, state, baldue
03) INTO :custNo, :lastName, :State, :BalDue
04) FROM QIWS.QCUSTCDT
05) WHERE BALDUE > 0;
06) If (&STATE = 'NY');
07) #MSG Balance Due found for Customer &CUSTNO in New York
08) elseif (&STATE = 'CA');
09) #MSG Balance Due found for customer &CUSTNO in California
10) else;
11) #MSG Balance Due customer &CUSTNO found in &STATE
12) endif;
13) endFor;
14) Endif;

In	this	example,	line	1	checks	if	any	rows	exist	in	the	QCUSTCDT	file	that	have	a	
balance	due.	If	so,	it	proceeds	to	the	next	statement	(line	2)	which	has	the	FOREACH	
command.	Otherwise,	it	jumps	to	the	ENDIF	statement	on	line	14.	Obviously	I	could	
have	avoided	this	"IF	EXISTS"	statement,	but	wanted	to	include	it	for	illustration	
purposes.		

The	FOREACH	opcode	(lines	2	to	5)	processes	each	row	of	the	SQL	SELECT	
statement	using	a	cursor.	It's	all	transparent	to	the	programmer,	making	it	easier	to	
code.	

11	

Each	row	that's	fetched	is	stored	in	the	host	variables	specified	on	the	INTO	clause,	
just	like	RPG	IV.	You	can	use	the	standard	SQL	host	variable	prefix	of	the	colon	(as	
illustrated	here)	or	the	SQL	iQuery	Script	variable	prefix	of	the	ampersand	(similar	
to	CL	variables).	Both	work	in	this	context.	Outside	of	the	INTO	clause,	the	
ampersand	(&)	symbol	is	required	to	identify	variables.	See	Session	Variables	later	
in	this	section.	

The	#MSG	directive	on	lines	7,	9	and	11	are	SQL	iQuery	Script	directives	that	write	
text	directly	to	the	joblog	of	the	job	running	the	script.	If	you	were	to	run	this	script	
from	the	Command	Entry	display,	the	output	would	look	similar	to	the	following:	

iQScript: COZTEST/QSQLSRC(CUSTBALDUE)
Balance Due found for Customer 839283 in New York
Balance Due customer 392859 found in VT
Balance Due customer 938485 found in GA
Balance Due found for customer 475938 in California
Balance Due found for Customer 192837 in New York
Balance Due customer 583990 found in MN

The	first	line	is	an	iQuery	Script-generated	message	that	indicates	the	name	of	the	
source	file	and	member	being	processed.	This	is	logged	whenever	a	SQL	iQuery	
Script	source	member	is	loaded.	It	comes	in	handy	when	debugging	scripts	or	
checking	joblogs.	

The	joblog	output	shown	above	is	the	result	of	the	#MSG	directives.	In	the	SQL	
iQuery	Script,	everything	to	the	right	of	the	#MSG	directive	is	written	to	the	joblog	
as	an	INFO	message.	Note	that	#MSG,	#SNDMSG	and	#JOBLOG	are	synonyms	and	
may	be	used	based	on	your	preference.		

SQL	iQuery	Script	ignores	upper/lower	case	that	is	not	quoted.	The	names	of	Script	
commands,	directives,	opcodes,	logic	conditional	statements	along	with	variable	
names	may	be	specified	in	upper/lower	case,	which	is	ignored.		

Session	Variables	

SQL	iQuery	Script	supports	fields	or	variables	to	store	data	similar	to	other	
languages.	These	variables	are	formally	named	Session	Variables.	Session	Variable	
names	may	be	up	to	30	characters	in	length,	must	start	with	the	Ampersand	symbol	
(&)	and	be	followed	at	least	one	alphabetic	character.	That	is	&A	is	valid,	but	&8	is	
invalid.	Subsequent	characters	in	the	name	may	consist	of	A-Z,	0-1,	and	the	
underscore	(_)	symbol.	The	first	character	must	be	A-Z,	the	last	character	may	not	
be	an	underscore.			

12	

The	Session	Variable	naming	rules	are:		

• Upper/lower	case	is	ignored.	
• They	must	begin	with	an	Ampersand	followed	by	at	least	1	letter	(A-Z).		
• Position	2	and	beyond	of	the	name	may	be	A-Z,	0-9	or	the	underscore.	
• The	final	character	of	the	name	may	not	be	an	underscore.		

o OK:	&HELLO_WORLD		
o INVALID:	&HELLOWORD_	

#DEFINE	Directive	

Session	Variable	are	implicitly	defined	"on	the	fly"	similar	to	how	the	JavaScript	
language	declares	variable.	You	may	define	them	when	you	need	them	or	in	
advance	using	the	#DEFINE	directive.		

#define &varName 'value';
#define &var2 = 'Hello World'
#define &var3 = 12.59
&counter = 0;

The	#define	command	declares	the	variable.	The	variable	name	may	be	followed	by	
its	initial	value.	If	the	variable	already	exists,	its	current	value	is	replaced	with	the	
value	specified	on	the	#define	command.	An	equals-sign	is	optional	on	the	#define	
directive.	The	semicolon	terminator	is	also	optional.	The	following	are	all	valid	
#define	directives:	

#define &ITEM_No1 12345
#define &ITEM_No2 = 12345
#define &ITEM_No3 '12345';

#DEFAULT	Directive	

The	#DEFAULT	directive	is	similar	to	#define	with	one	important	difference:	If	the	
session	variable	already	exists,	the	#default	statement	is	ignored.	This	is	useful	
when	passing	in	Session	Variables	on	the	SETVAR	parameter	of	the	RUNiQRY	
command,	or	when	using	nested	SQL	iQuery	Scripts.	

#define &CustNo = 5250;
#msg CustNo = &CUSTNO
#default &CUSTNO = 3741; -- Ignored since &CUSTNO is already defined
#msg CustNo = &CUSTNO

The	results	of	the	above	script	produce	the	following	messages	in	the	joblog:	

CustNo = 5250
CustNo = 5250

13	

The	#default	directive	checked	to	see	if	&CUSTNO	existed.	Since	the	#define	was	
previously	used	to	declare	&CUSTNO,	the	#default	directive	does	not	assign	its	
value	to	the	session	variable.	The	output	messages	show	the	&CUSTNO	session	
variable	is	unchanged	after	the	#default	directive	is	processed.	

The	EVAL	opcode	may	also	be	used	to	declare	and	assign	a	value	to	a	Session	
Variable.	If	the	value	doesn't	exist,	it	is	automatically	created.			

EVAL &CUSTNO = 12345;

The	above	statement	assigns	the	value	12345	to	the	&CUSTNO	session	variable.	
Beginning	with	SQL	iQuery	version	7,	the	EVAL	opcode	name	is	optional.	The	
following	is	also	a	valid	assignment	statement:	

&CUSTNO = 12345;

Note:	unlike	the	#declare,	#define,	#default	directives,	the	EVAL	opcode	requires	an	
equals	sign	and	terminating	semicolon.	This	is	because	the	EVAL	opcode	along	with	
all	SQL	iQuery	Script	opcodes	are	multi-line	enabled.	A	semicolon	is	used	to	
terminate	these	opcode	statements	similar	to	how	it	is	done	in	RPG	IV	free	format.	

There	are	two	additional	methods	to	define	Session	Variables	and	assign	a	value	to	
them:	

1. Specify	the	SETVAR	parameter	on	the	RUNiQRY	command.	
2. Target	the	Session	Variable	using	the	INTO	clause	of	a	SELECT	or	VALUES	

statement.	

The	SETVAR	parameter	is	often	used	with	the	#default	command.	If	a	Session	
Variable	name	is	not	specified	on	the	SETVAR	parameter	of	RUNiQRY,	a	#default	
directive	may	be	used	to	assign	a	value	to	that	Session	Variable.	If	a	Session	
Variable	name	is	specified	on	the	SETVAR	parameter,	then	its	#default	is	ignored.		

Session	Variables	may	contain	numeric	or	character	data.	They	may	also	contain	
the	contents	of	an	IFS	stream	file.	For	example,	you	can	read	an	entire	IFS	stream	
file	into	a	single	Session	Variable	using	the	GETFILE	built-in	function.	

eval ¬es = getFile('/home/corp/daily_msg.txt');

14	

This	loads	the	DAILY_MSG.TXT	file's	content	into	the	&NOTES	session	variable.	
GETFILE()	is	very	useful	when	using	SQL	iQuery	email	capabilities	or	when	using	
SQL	iQuery	for	Web.	It	not	only	reads	the	file,	but	it	also	merges	any	embedded	SQL	
iQuery	Session	Variable	names.	That	is,	it	converts	embedded	Session	Variable	
names	to	their	content	during	the	load	process.		

While	there	is	no	practical	limit	to	the	size	of	the	data	stored	in	a	Session	Variable,	
internally	each	variable's	memory	management	is	limited	to	just	under	2	gigabytes.	

Predefined	Session	Variables	

The	following	predefined	Session	Variables	are	automatically	created	and	assigned	
a	value	after	each	SQL	statement	is	run	within	an	SQL	iQuery	Script.	

&SQLSTATE	-	Automatically	set	to	the	last	SQL	statement's	SQL	State.	You	may	use	
this	variable	wherever	you	would	normally	use	the	SQL	State	host	variable	in	RPG	
or	other	high-level	languages.	

&SQLCODE	–	Automatically	set	to	the	last	SQL	statement's	SQL	Code.	You	may	use	
this	variable	wherever	you	would	normally	use	the	SQL	State	host	variable	in	RPG	
or	other	high-level	languages.	

&SQLMSG	-	Automatically	set	to	the	last	SQL	statement's	SQL	message	text	(if	any).	
Many	SQL	STATE	codes	do	not	have	associated	message	text,	so	this	Session	
Variable	is	often	empty.	

Undefining	Session	Variables	

To	destroy	an	existing	Session	Variable,	the	#undef	or	#undefine	directive	may	be	
used.	This	directive	immediately	removes	the	Session	Variable	from	the	internal	
storage	collection,	destroys	its	content	and	frees	its	memory.		

#undef &VARNAME

In	the	above	statement,	the	&VARNAME	Session	Variable	is	deleted	from	SQL	
iQuery	Script	storage.	That	session	variable	name	no	longer	exists.		

Interpretive	Language	
SQL	iQuery	Script	is	an	interpreted	language.	Each	line	of	code	is	read,	parsed,	and	
processed	dynamically	at	runtime,	including	all	SQL	statements.	You	may	insert	
Session	Variables	into	the	script	anywhere	in	a	statement.	The	variable	name	is	
replaced	with	its	content	at	runtime.		

15	

When	used	with	directives	or	iQuery	Script	commands	or	conditional	logic,	you	use	
the	session	variable	name	just	like	any	other	programming	language.	That	is	
quoting	a	session	variable	name	is	very	rarely	required.	Once	except	is	when	it	
contains	an	edited	date	value	such	as	2023-06-21.	In	that	case	you	should	quote	the	
session	variable	on	a	conditional	statement.	

When	a	session	variable	is	used	within	an	SQL	statement,	consider	whether	the	
expansion	of	that	variable	into	your	content	would	cause	a	syntax	error	when	
unquoted	vs	quoted.	Use	that	decision	to	determine	if	the	value	should	be	quoted.	
Consider	the	following:	

01) #define &FOOD = 'SANDWICH'
02) #define &ORDER = 0;
03) #default ®ID = 'CHICAGO'
04)
05) Select ordid, product
06) INTO &ORDER, &FOOD
07) FROM ®id.prodData.OnlineOrders
08) WHERE transID = &TRANSID
09) LIMIT 1;
10)
11) IF (&FOOD = 'PIZZA');
12) Update ®id.prodData.orders SET
13) ITEM = '12',
14) DESC = '&FOOD'
15) WHERE ORDID = &ORDER;
16) endIf;

Note	the	use	and	the	quoting	of	session	variables	in	the	above	example.	On	line	6,	
the	INTO	clause	is	actually	reading	the	data	into	the	identified	session	variables	so	
obviously	quoting	the	session	variable	in	this	context	is	not	permitted.		

Lines	7	and	line	12	use	the	®ID	variable	as	a	qualifier	for	a	3-part	object	name.	
Again,	in	this	context	quoting	is	not	permitted.		

Line	14	on	the	other	hand,	contains	character	field	name	being	updated	with	the	
content	of	the	&FOOD	session	variable.	Since	&FOOD	contains	text	data,	it	must	be	
enclosed	in	quotes	on	line	14	or	you	would	experience	a	runtime	syntax	error.		

When	a	session	variable	contains	numeric	content	and	it	is	used	in	an	SQL	
statement	with	a	numeric	column,	it	does	not	need	to	be	quoted.	For	example.	

#define &CUSTID = 5250
Select * from prodData.Sales
 WHERE custNo = &CustNo;

16	

In	the	above	example,	the	Session	Variable	&CUSTNO	is	expanded	to	5250	so	the	
WHERE	clause	looks	like	this	at	runtime:	

WHERE custNo = 5250;

This	is	valid	syntax,	so	the	programmer	avoids	quoted	the	&CUSTNO	variable	in	this	
context.	

Using	quoted	session	variable	names	on	SQL	iQuery	Script	conditional	statements	
(IF/ELSEIF/FOR/WHILE)	is	supported,	but	normally	unnecessary.		

One	great	example	where	you	wouldn't	use	the	quotes	in	an	SQL	statement	is	when	
a	part	of	that	statement	is	extracted	from	a	Session	Variable.	The	3-level	database	
names	or	3-tier	names	is	a	good	example	of	that.	While	in	SQL/PL	and	standard	SQL	
on	the	IBM	i	platform,	the	database	name	must	be	hard	coded	into	the	SQL	
statement	itself,	SQL	iQuery	Script	allows	programmers	to	set	that	part	of	the	
statement	as	a	Session	Variable	and	have	it	resolved	at	runtime.	For	example:	

#default &RMT = 'CHICAGO'
select * from &RMT.qiws.QCUSTCDT;

This	would	expand	to:	

select * from CHICAGO.qiws.QCUSTCDT;

In	the	above	example,	the	session	variable	&RMT	is	used	to	identify	the	database	
(IBM	i	partition)	to	query.	In	this	case,	at	runtime	the	content	of	&RMT	is	translated	
to	CHICAGO	and	added	to	the	SELECT	statement	shown	above.	

Most	SQL	iQuery	Script	Users	utilize	Session	Variables	on	the	WHERE	clause	of	a	
SELECT	statement.	But	they	are	not	limited	to	the	WHERE	clause;	they	can	be	used	
anywhere	in	the	SQL	statement	to	embed	portions	of	the	statement	at	runtime.	For	
example,	the	actual	file	name	on	a	FROM	clause	may	be	passed	to	the	statement	
within	a	Session	Variable,	similar	to	the	following:	

#define &filename = 'ORDHIST'
SELECT * FROM myData.&FileName order by ACCTNO;

At	runtime,	the	SQL	iQuery	Script	engine	produces	the	following	statement:	

SELECT * FROM myData.ORDHIST order by ACCTNO;

This	provides	a	much	simpler	way	to	build	a	statement	dynamically.	

17	

As	an	interpreted	language,	each	statement	is	expanded	by	translating	each	session	
variable	name	to	its	value	at	runtime.	This	allows	programmers	to	build	complex	
SQL	statements	that	contain	runtime	components,	without	the	challenges	and	
ugliness	of	a	lengthy	and	vexing	concatenation	statement.	

In	the	context	of	Conditional	statements,	when	the	statement	requires	a	quoted	
value,	then	at	runtime,	SQL	iQuery	Script	will	attempt	to	quote	the	session	
variable's	content,	otherwise	it	will	appear	as	an	unquoted	value.	Here	are	two	
examples:	

01) #define ®ION = 'CHICAGO'
02) #define &CODE = 2
03) If (®ION = 'PHOENIX');
04) IF (&CODE > 0);

Line	3	produces	a	quoted	runtime	result	of:	IF	('CHICAGO'	=	'PHOENIX')	while	line	4	
produces	an	unquoted	result	of:	IF	(2	>	0).		

SQL	iQuery	Script	is	context-aware;	in	most	situations	it	works	the	way	you	want	it	
to	work.	But	when	in	doubt,	you	can	always	quote	the	session	variable	name	in	a	
conditional	statement,	just	to	be	sure.	SQL	iQuery	Script	will	not	quote	a	Session	
Variable	that	is	already	enclosing	quotes.	

18	

CONVERTING	QM	QUERY	AND	
QUERY/400	QUERIES	TO	SQL	IQUERY	
If	you	have	a	library	of	Query/400	queries,	you	can	use	the	IBM-supplied	
RTVQMQRY	CL	command	to	convert	those	existing	queries	to	SQL	statements.	To	
do	that,	use	the	RUNQRMQRY	with	the	name	of	the	Query	and	the	source	member	
where	the	generated	SQL	statement	should	appear.	For	example:	

RTVQMQRY QMQRY(BOBSLIB/MYREPORT) SRCFILE(BOBSRC/QSQLSRC) ALWQRYDFN(*YES)

This	will	produce	a	source	member	named	MYREPORT	that	contains	Query	headers	
and	an	SQL	SELECT	statement	that	reproduces	your	results	with	some	omissions.		

01) H QM4 05 Q 01 E V W E R 01 03 23/01/05 07:56
02) V 1001 050 Customer Balance Due Report
03) V 5001 004 *HEX
04) SELECT
05) ALL CUSNUM, LSTNAM, INIT, STREET, CITY, STATE,
06) ZIPCOD, CDTLMT, CHGCOD,
07) (BALDUE), CDTDUE
08) FROM QIWS/QCUSTCDT T01
09) WHERE BALDUE > 0

SQL	iQuery	can	directly	read	and	process	this	source	code,	unchanged.	It	uses	the	
embedded	Report	Title	(line	2)	and	then	processes	the	SQL	SELECT	statement	on	
lines	4	to	8.		

Note	the	unusual	parens	around	the	BALDUE	column	in	the	SELECT	clause.	This	is	
an	indication	that	some	type	of	function	was	used	on	that	column.	You	will	need	to	
go	into	the	Query/400	environment	and	see	what	that	function	was	because	the	
RTVQMQRY	command	does	not	return	it.		

The	only	way	to	know	what	this	parenthetical	expression	was,	is	to	look	at	the	
printed	query	definition.	Sadly,	that	means	launching	WKRQRY	and	issuing	a	Print	
Definition	on	the	query	itself.		Once	you	do	that,	scroll	down	to	the	Report	column	
formatting	and	summary	functions,	and	look	for	anything	marked	under	the	
"Summary	Functions"	column:	

1=SUM(), 2 = AVG(), 3=MIN(), 4=MAX(), and 5=COUNT()

19	

In	my	example,	the	value	is	1	next	to	the	BALDUE	column.	Since	this	is	not	a	
summary	report,	that	is	each	record	is	included	where	a	balance	due	is	greater	than	
0,	I	need	to	use	the	SQL	iQuery	#COLTOTALS	directive	instead	of	the	SQL	SUM	
function.	I	insert	that	directive	into	the	source	member	as	follows	(line	4):	

01) H QM4 05 Q 01 E V W E R 01 03 23/01/05 07:56
02) V 1001 050 Customer Balance Due Report
03) V 5001 004 *HEX
04) #COLTOTALS 10
05) SELECT
06) ALL CUSNUM, LSTNAM, INIT, STREET, CITY, STATE,
07) ZIPCOD, CDTLMT, CHGCOD,
08) (BALDUE), CDTDUE
09) FROM QIWS/QCUSTCDT T01
10) WHERE BALDUE > 0

Line	4,	above,	contains	#COLTOTALS	10.	This	is	an	SQL	iQuery	Script	directive	or	
command	that	identifies	the	relative	column	number	to	be	accumulated.	The	
BALDUE	and	CRTDUE	columns	would	appear	in	printed	output	with	BALDUE	
column	total	shown	below	it;	and	excerpt	of	this	output	appears	below:	

 BALDUE CDTDUE
 101.00 .00
 439.00 .00
3987.50 300.00
 250.00 100.00
 490.50 -1234.50
 500.00 .00
5768.00 ***

While	#COLTOTALS	supports	both	relative	column	number	(10	in	this	example)	as	
well	as	the	column	name	(e.g.	#COLTOTALS	BALDUE)	I	prefer	to	use	the	relative	
column	number	since	the	name	of	columns	is	often	obscured	or	lost	while	
processing	an	SQL	statement.	For	example,	if	BALDUE	had	something	like	a	column	
heading	on	it,	(i.e.,	the	AS	clause)	then	it	is	no	longer	known	as	BALDUE.	Likewise,	if	
you	cast	a	column	to	another	length	or	type,	it	loses	its	original	name.	

You	quickly	learn	to	replace	the	"V	1001"	header	lines	generated	by	RTVQMQRY	
with	the	#Hx	directives.	For	example,	lines	1	and	3	are	not	important,	but	line	2	
contains	the	"V	1001"	value	which	is	the	Report	Heading.	In	the	above	script,	lines	1	
and	2	can	be	deleted	and	line	3	can	be	replaced	with	the	#H1	directive.	That	would	
mean	the	header	is	the	only	line	needed,	and	is	replaced	with	#H1	as	follows:	

#H1 Customer Balance Due Report

20	

Now	the	SQL	iQuery	Script	version	of	that	Query/400	source	looks	like	the	
following:	

01) #H1 Customer Balance Due Report
02) #COLTOTALS 10
03) SELECT
04) CUSNUM, LSTNAM, INIT, STREET, CITY, STATE,
05) ZIPCOD, CDTLMT, CHGCOD,
06) BALDUE, CDTDUE
07) FROM QIWS/QCUSTCDT T01
08) WHERE BALDUE > 0;

You'll	note	that	I've	removed	the	ALL	clause	from	the	SELECT	as	it	is	redundant	and	
often	confuses	users,	I've	also	removed	the	parens	from	around	the	BALDUE	
column.	Lastly	I've	added	a	semi-colon	to	terminate	the	statement.	

21	

SQL	IQUERY	SCRIPT	
The	basic	SQL	iQuery	Script	source	member	is	structured	with	1	to	3	sections.	
Advanced	scripts	have	more	sections,	include	other	source	members,	and	
communicate	with	the	Web	Browser	through	the	integrated	CGI	interface.	But	an	
SQL	iQuery	Script	typically	has	either	of	the	following	two	structures:	

Basic	Script:	

SQL	Statement	1;	
SQL	Statement	2;	
SQL	Statement	3;	

Classic	Script:	

Output	Headers	

Declare	Session	Variables	

Conditional	Logic	

SQL	Statements...	

Final	Statement	

The	point	of	the	above	illustrations	are	to	show	that	an	SQL	iQuery	Script	may	
contain	just	SQL	statement(s)	or	it	can	be	an	entire	application.	You	can	even	avoid	
doing	any	SQL	statements	entirely	and	instead,	write	stuff	to	the	joblog,	run	CL	
commands,	and	retrieve	system-related	information	(sysvals,	serial	number,	etc.).	
For	example,	you	may	want	to	test	a	formula	or	a	regular	expression	using	SQL	
iQuery	Script	and	write	the	results	to	the	joblog	for	review.		

Let's	look	at	examples	of	each	type	of	SQL	iQuery	Script.	

Basic	iQuery	Script	

If	you	have	an	elaborate	SQL	statement	(perhaps	one	that	spans	many	source	lines)	
you	may	want	to	keep	it	in	a	source	member	so	it	can	be	easily	run.	This	is	the	
simplest	form	of	an	SQL	iQuery	Script.	You	simply	store	that	SQL	statement	in	the	
source	member,	and	then	when	you	need	it,	run	it	using	RUNiQRY	as	follows:		

22	

RUNiQRY SRCFILE(mysrc/qSQLSRC) SRCMBR(CUSTLIST)

This	runs	the	SQL	statement(s)	stored	in	the	CUSTLIST	source	member.	If	you	want	
to	print	the	results	instead	of	viewing	them	on	the	display,	add	the	
OUTPUT(*PRINT)	parameter	to	the	above	RUNiQRY	command.	

Classic	Script	

While	an	SQL	iQuery	Script	can	be	a	little	as	one	line/one	statement,	most	scripts	
have	multiple	lines	of	code,	including	#Hx	directives,	Session	Variables,	and	
conditional	logic.	All	of	that	is	normally	followed	by	an	SQL	statement	that	produces	
the	desired	result.	That	final	statement	may	be	virtually	any	SQL	statement,	but	it	is	
typically	the	SELECT	statement.		

Output	Headers	

SQL	iQuery	supports	custom	report	headings.	These	can	be	thought	of	as	Report	
Titles	and	may	be	specified	using	the	#Hx	directive	or	specified	on	one	of	the	title	
parameters	of	the	RUNiQRY	command	itself.	I	tend	to	use	the	#Hx	directives	
exclusively.	

#Hx <output title text char(50)>

Each	#Hx	directive	may	contain	up	to	50	characters	of	text.	The	text	should	not	be	
quoted,	but	if	it	is,	those	quotes	will	appear	in	the	heading	result.	Everything	
through	the	end	of	the	line	or	the	first	50	characters	is	used.	#Hx	statement	do	not	
need	to	be	specified	in	sequence	as	the	x	in	#Hx	identifies	the	sequence	of	the	
heading	line.		

Here	is	an	example:	

01) #H1 Cozzi Productions, Inc.
02) #h2 New York Regional Report
03) #default ®ION 'NY'
04) Select * from qiws.qcustcdt WHERE STATE = '®ION';

Lines	1	and	2	use	the	#Hx	header	commands	to	indicate	the	text	that	appears	on	
lines	1	and	2	of	the	output.	Headers	are	used	for	many	output	media	types.	The	
display/interactive	output	supports	up	to	3	header	lines	(i.e.,	#H1	#H2	and	#H3)	
while	other	output	types	such	as	*PRINT,	*PDF,	*EXCEL	also	support	a	fourth	
header	line	(#H4)	giving	you	extra	headers	when	needed.		

23	

Declaring	Session	Variables	

Session	Variables	may	be	declared	or	deleted.	There	two	directives	that	may	be	
used	to	explicitly	define	a	Session	Variable	and	another	that	may	be	used	to	delete	
or	"undefine"	a	session	variable.	In	addition,	Session	Variables	may	be	declared	on	
the	SETVAR	parameter	of	the	RUNiQRY	command	or	implicitly	defined	using	an	
EVAL	opcode,	a	SELECT	INTO	or	the	VALUE	INTO	statements.		

Session	variables	may	be	declared	within	the	SQL	iQuery	Script	or	passed	to	the	
script	via	the	SETVAR	parameter	of	the	RUNiQRY	command.	When	passed	in	on	
SETVAR,	a	session	variable	has	the	same	characteristics	as	using	the	#define	
directive	in	the	SQL	iQuery	Script.	

In	SQL	iQuery	Script,	the	3	directives	that	are	used	to	declare	or	destroy	a	Session	
Variable	are:	

• #define	–	Define	a	Session	Variable,	optionally	assign	it	a	value.	
• #default	–	If	the	Session	Variable	does	not	exist,	define	it	and	assign	it	a	

value.	
• #undef	–	Undefine	or	delete	a	Session	Variable	from	memory.	

Note	that	when	a	session	variable	is	passed	to	a	script	via	the	SETVAR	parameter	of	
the	RUNiQRY	command,	if	a	#define	directive	is	specified	for	the	same	variable	
name,	the	#define	directive	takes	priority	over	the	SETVAR	and	replaces	that	
Session	Variable.	When	you	need	the	SETVAR	value	to	be	used	when	specified	but	
still	need	a	default	for	a	Session	Variable	when	it	isn't	passed	via	SETVAR,	use	the	
#default	directive.		

For	more	information	see	the	table	of	Directives	later	in	this	document.		

Conditional	Logic	

SQL	iQuery	Scripts	has	a	basic	set	of	conditional	logic	opcodes.	They	allow	you	to	
control	the	flow	of	the	script.	Conditional	statements	may	be	nested	and	may	
control	the	execution	of	SQL	statements,	such	as	INSERT,	UPDATE,	SELECT,	etc.	
Conditional	statements	must	be	terminated	with	a	semicolon,	similar	to	RPG	IV.		

24	

As	with	most	programming	languages,	conditional	statements	may	span	multiple	
source	lines	when	necessary;	the	statement	continues	until	a	semicolon	terminator	
character	is	detected.		Note	that	there	are	#	directive	versions	of	many	of	these	
opcodes.	The	#directive	versions	may	be	used	to	conditionally	build	SQL	
statements	at	runtime.	More	on	this	feature,	later.	

OpCode	 Description	
IF	<condition>	 Standard	conditional	statement.	Supports	all	SQL	

syntax	that	may	appear	on	a	standard	SQL	WHERE	
clause.	For	example:	
IF	(SUBSTR(&PRODUCT,3,4)	=	'DEFG');	
All	conditional	statements	must	be	terminated	with	
a	semicolon.		

IF	EXISTS	(select	statement...);	 The	IF	EXISTS	select-stmt	test	can	be	used	with	a	
nested	SELECT	statement	to	determine	if	any	rows	
exist	before	continuing.		
IF	EXISTS	(SELECT	...);	
	--	conditioned	code	goes	here	
endif;	

If	EXIST	<object>	objtype;	 The	IF	EXISTS	library/object	*objtype;	test	can	be	
used	to	check	if	an	IBM	i	object	or	member	exists.		
To	check	for	object	existance:	
IF	EXIST	libname/objname	*objtype;	
To	test	if	a	member	exists	in	a	file:	
IF	EXIST	srclib/srcfName(mbrName)	*MBR;	

ELSEIF	 A	combination	of	ELSE	and	IF.	When	the	prior	IF	or	
ELSEIF	condition	is	false,	the	next	ELSEIF	is	tested.	
This	continues	until	an	ELSEIF	condition	is	true	or	
the	corresponding	ENDIF	is	encountered.		

ELSE	 When	the	above	ELSEIF	or	IF	(when	no	ELSEIF	
conditions	are	specified)	fails,	the	one-and-only	
final	ELSE	statement	receives	control	and	any	
statements	following	it	are	performed	until	the	
corresponding	ENDIF	statement	is	encounter.	

DO	
	
FOR	
	

Classic	"for"	loop	that	auto-increments	a	counter.	It	
has	syntax	similar	to	RPG	IV.	The	opcode	is	FOR	or	
DO	(either	can	be	used).	
FOR	&i	=	1	to	10;	
		--	statements	go	here	
endfor;	
Users	may	use	the	DO	opcode	as	a	synonym	the	
FOR	opcode.	

WHILE	 Classic	"do	while"	loop.	Performs	the	code	while	
the	condition	is	met.		
WHILE	(&COUNT	<	&LIMIT);	
	--	your	while-loop	code	goes	here	
endwhile;	

25	

OpCode	 Description	
FOREACH		
FOR	EACH	

Processes	each	resultSet	row	of	an	embedded	
SELECT	statement,	returning	each	row's	data	to	the	
Session	Variables	on	the	INTO	clause.	Once	EOF	is	
reached,	the	FOREACH	loop	terminates	and	closes	
the	SQL	Cursor.	
FOREACH	select	cusnum,baldue	
								INTO	:CustNo,	:Due	
							FROM	QIWS.QCUSTCDT	
								WHERE	STATE	=	'NY';	
			If	(&Due	>	0);	
				#MSG	Customer	&CUSTNO	has	a	balance	due	of	
&Due	
	endIf;	
endfor;	

LEAVE	
BREAK	

The	LEAVE	or	BREAK	opcodes	exit	the	current	
Loop	(FOR,	DO,	FOREACH,	WHILE)	immediately	
and	jump	to	the	line	after	the	corresponding	
ENDDO/ENDFOR/ENDWHILE	statement.		

ITER	
ITERATE	
CONTINUE	

Logic	is	passed	to	the	top	of	the	current	loop	block.		

END	IF	
END	FOR	
END	DO	
END	WHILE	

Each	conditional	statement	must	be	closed	with	a	
corresponding	ENDxxx	statement.	Note	that	the	
END	opcode	syntax	is	flexible	in	that	it	supports	
both	the	RPG	IV	style	and	SQL/PL	style.	That	is,	
both	of	the	following	syntax	formats	are	supported:	
END	IF;		or		ENDIF;	

	

The	IF	statement	supports	the	EXISTS	extension,	as	mentioned.	It	allows	the	IF	
EXISTS	opcode	to	be	include	an	SQL	select	statement	that	returns	true	when	
records/rows	are	found	that	match	the	SELECT's	WHERE	clause	or	false	when	no	
records/rows	are	returned.	The	SELECT	statement	must	be	enclosed	in	
parentheses.		

if exists (select * from qiws.qcustcdt where BALDUE > 0);

You	may	also	specify	it	with	the	NOT	operator:	

if NOT exists (select * from qiws.qcustcdt where BALDUE > 0);

In	addition,	IF	EXISTS	may	be	used	to	test	for	the	existence	of	an	IBM	i	object.	To	do	
that,	simply	specify	the	qualified	object	name	followed	by	the	IBM	i	object	type.	For	
example:	

if exists qiws.qcustcdt *file;

26	

The	IF	NOT	EXISTS	may	also	be	used,	for	example:	

if NOT exists qiws/qcustcdt *file;

You	can	see	from	the	previous	example	that	either	qualifier-symbol	for	object	
names	may	be	used.	That	is	both	lib/object	and	lib.object	are	supported.	

When	a	multi-member	file	is	being	checked,	you	can	specify	it	as	illustrated	above,	
or	you	can	include	the	member's	name	to	verify	that	a	specific	member	exists	in	the	
file.	The	member	exists	syntax	is	illustrated	below	on	line	1:	

01) IF NOT EXISTS devsrc/qsqlsrc(THX1138) *MBR;
02) CL: addpfm devsrc/qsqlsrc MBR(THX1138) SRCTYPE(SQL);
03) endif;

I	particularly	enjoy	using	IF	EXISTS	to	check	the	existence	of	data	areas	which	I	use	
as	flow	control	or	to	enable	features	I've	coded	into	the	script	itself.	For	example,	I	
can	test	to	see	if	the	data	area	named	IQDEBUG	exists	in	QGPL,	and	then	route	the	
code	path	as	desired.	

If exists qgpl/IQDEBUG *DTAARA;
 #MSG Debug Mode Detected. Dumping Session Variables
 #dumpVars Dev Mode
endif;

In	the	above	example,	I	check	if	the	data	area	IQDEBUG	exists	in	the	QGPL	library.	If	
I	omitted	the	library,	*LIBL	is	used.	If	the	data	area	exists,	I	write	a	message	to	the	
joblog	and	then	dump	out	all	existing	Session	Variable	names	and	their	contents.	
The	#DUMPVARS	directive	writes	the	name	and	content	of	all	session	variables	to	
the	joblog.		

SQL	Statements	

Intermixed	with	conditional	logic	or	as	stand-alone	statements,	virtually	any	SQL	
statement	may	be	used	within	the	SQL	iQuery	Script.	This	includes	but	is	not	limited	
to:	SELECT	INTO,	VALUES	INTO,	INSERT,	UPDATE,	DELETE,	DROP,	CREATE,	
DECLARE	GLOBAL	TEMPORARY	TABLE,	MERGE	and	so	on.	The	statements	are	
processed	by	first	translating	any	embedded	Session	Variables	into	their	
corresponding	values,	then	they	are	sent	to	the	SQL	CLI	engine	for	processing	using	
native	IBM	i	interfaces.	

The	only	session	variables	that	are	not	translated	are	those	on	the	INTO	clause	of	a	
SELECT	or	VALUES	statement.	Their	value	is	assigned	by	the	SQL	statement	itself.	

27	

Blocked	SQL	Statements	

SQL	iQuery	provides	a	security	mechanism	to	block	certain	SQL	commands.	This	is	
accomplished	by	creating	data	areas	in	a	library	on	the	library	list.	If	the	specific	
data	area	exists,	then	that	SQL	statement	is	blocked	for	all	users.		

Data	Area	 Blocked	Statement	
IQ_UPDATE	 UPDATE	
IQ_INSERT	 INSERT	
IQ_DELETE	 DELETE	
IQ_MERGE	 MERGE	
IQ_MODIFY	 INSERT	UPDATE	DELETE	MERGE	
IQ_DROP	 DROP	
IQ_WITH	 WITH	(CTE	statements)	
	

To	create	one	or	more	of	these	data	areas,	insure	that	*PUBLIC	cannot	delete	or	
rename	the	objects.	Here	is	an	example	of	the	CRTDTAARA:	

CRTDTAARA DTAARA(QGPL/IQ_DROP) TYPE(*CHAR) AUT(*USE)

Final	Statement	

When	the	final	statement	in	an	SQL	iQuery	Script	is	any	SQL	statement,	normally	it	
is	a	SELECT	or	VALUES	statement	but	can	be	any	SQL	statement,	that	statement	is	
passed	back	to	the	RUNiQRY	program	for	processing.	That	is,	the	SQL	iQuery	Script	
processor	does	not	run	that	final	statement,	but	instead,	assembles	it	by	embedded	
any	Session	Variables	and	processing	any	conditional	statements.	Then	the	
statement	is	sent	back	to	the	RUNiQRY	program.	That	final	statement	may	not	
include	an	INTO	clause.		

SQL	iQuery	Script	Components	

SQL	iQuery	Script	not	only	supports	session	variables,	but	it	also	supports:	

• Figurative	constants	
• Directives	
• Opcodes	
• Built-in	Functions	

Each	of	these	are	explain	in	the	following	sections.	

28	

Figurative	Constants	

As	with	any	programming	language	SQL	iQuery	Script	includes	a	set	of	predefined	
values,	which	we	call	Figurative	Constants.	There	are	a	number	of	SQL	iQuery	
figurative	constants,	including:	

Constant	 Name	 Description	
*DATE Current System Date The current date in job date format. To

alter the format of this result, use the
CHGJOB DATFMT() command.

*TIME Current Time
*DAY Current Day of the

Week
The full day of the week name, e.g.,
Sunday, Monday, etc.

*SRCMBR iQuery Script source
member name

The name of the source member where the
*SRCMBR appears.

*SYSNAME The Partition ID system
name.

The system name or partition ID. This is
materialized using the MATMATR MI
instruction, but is the same name returned
by the RTVNETA CL command.

*SRLNBR The Partition Serial
Number

The IBM i Partition serial number. The
MATMATR MI instruction is used to extract
this data, however it is the same info
returned by the QSRLNBR system value.

*USRPRF or
*USER

User profile The IBM i user profile of the user that
launched the SQL iQuery Script.

*CURUSR Current User profile The current user profile under which the
job is running

*GRPPRF Group Profile The Group User Profile under which the job
is running.

*JOB_NAME Qualified 3-part job
name

The job identifier as a 3-part qualified job
name. nnnnnn/uuuuuuuuuu/jjjjjjjjjj

*JOBNAME The 10 character name
component of the job
name associated with
the job running the
SQL iQuery script.

The job name component of the job
identifier.

*JOBUSER The 10 character user
profile associated with
the job running the
SQL iQuery script.

The user profile that started the job.

*JOBNBR The 6-character job
number associated with
the job running the
SQL iQuery script.

The, up to, 6-digit job number of the job.

*JOBDATE The job date The job date returned in CYYMMDD
format. Note the job date is modified when
the CHGJOB DATE(...) command is run.
Otherwise, it remains unchanged
regardless of the duration of the job.

*CCSID Job CCSID The job's CCSID under which the job is
running.

29	

Constant	 Name	 Description	
*DFTCCSID The Job's default

CCSID
The default CCSID if the job is running
under a "no CCSID" configuration. For
example, the job's CCSID is 65535.

*SYSCCSID The value of the
QCCSID System value

The system value QCCSID value.

*HOMEDIR User's home folder The home directory associated with the
user profile running the script. Note that
simply because a User Profile contains a
home directory value, there is no
guarantee that the home director exists.

*PRODLIB SQL iQuery installation
Library name

The 10-character library name were SQL
iQuery was installed. Normally this is
IQUERY and cannot be changed.

*VxRyMz
*VxRy

 Flags that indicate if the currently running
IBM i version is at least at the level
specified. For example, if you are running
V7R4, then *V7R1 *V7R2 *V7R3 and
*V7R4 return true, but *V7R5 returns false.
e.g.,
if defined(*V7R3);
 ...
endif;

*WEBUSER Remote User for
CGI/Web Brower user.

When running SQL iQuery for Web, this
constant is converted to the user profile
who signed into the web browser through
the secured interface (if any).

	

These	figurative	constants	may	be	specified	anywhere	a	regular	Session	Variable	is	
allowed;	except	they	may	NOT	be	used	as	part	of	an	SQL	statement.		

If	a	figurative	constant	value	needs	to	be	used	in	an	SQL	statement,	assign	its	value	
to	a	Session	Variable,	and	then	use	that	session	variable	in	the	SQL	statement.	

In	the	context	of	the	*VxRy	and	*VxRyMz	constants,	when	used	on	conditional	
statements,	wrap	them	in	the	defined()	or	isDefined()	built-in	functions	to	provide	
a	true/false	conditional	test.	For	example:		

IF defined(*V7R4);

30	

SQL	iQuery	Script	Directives	

There	a	several	non-conditional,	non-SQL	operators	which	we	call	iQuery	Script	
Directives.	They	have	also	been	referred	to	as	hashtag	directives	or	hashtag	
commands	by	our	users,	so	either	term	is	acceptable.	You've	already	read	about	
#H1,	#define	and	a	few	others.	Directives	occupy	a	single	line	of	code,	typically,	and	
perform	one	task,	such	as	assigning	the	output	media,	setting	up	the	headings,	or	
controlling	certain	attributes.	

There	are	several	directives,	those	related	to	programing	SQL	iQuery	Scripts	are	
included	in	the	table	below.	There	are	many	others	that	are	covered	in	context	as	
you	progress	through	this	document.		

Directive	 Parameters	 Description	
#define	 Variable	name	

Value	
Declare	a	variable	and	assign	a	value	to	
that	variable.		
#define	&count	1	
NOTE:	#Declare	may	be	used	as	a	
synonym	of	the	#define	directive.	

#default	 Variable	name	
Default	value	

If	a	variable	does	not	exist,	declare	the	
variable,	and	assign	it	the	specified	default	
value.	If	it	does	exist,	ignore	the	statement.	
#define	&limit	100	

#sysval	 Variable	name	
System	Value	

Retrieve	system	value.	
#sysval	&DATFMT	=	QDATFMT	
Note	that	the	GETSYSVAL()	built-in	
function	was	also	introduced	in	iQuery	V5	
and	may	be	used	in	place	of	the	#sysval	
directive.	

#Hx	 Title	text	 Declare	output	title	line.		
#H1	to	#H3	are	supported	by	all	output	
formats,	#H4	to	#H9	are	also	supported	by	
Excel	output.			

#sndmsg	 Message	text	 Send	an	INFO	message	to	the	joblog	
#sndsts	 Message	text	 Send	a	*STATUS	message	to	the	*EXT	

message	queue.	
#snddiag	 Message	text	 Send	a	*DIAG	message	to	the	job’s	message	

queue.	

31	

Directive	 Parameters	 Description	
#dumpVars	 Title	 Writes	the	name	of	each	Session	Variable	

along	with	its	contents	to	the	joblog	as	an	
*INFO	message.		The	optional	title	text	
may	be	specified	to	help	indicate	where	
the	dumpvars	statement	occurred.	Note	
the	command	has	two	spellings:	
#DUMPVAR	or	#DUMPVARS	

	

Directives	have	the	following	syntax:	

#XXXXXXXXXX <value>

The	value	or	parameters	vary	based	on	the	Directive	being	used.	For	example:	#H1	
supports	1	parameter	(the	header	text),	while	#default	supports	2	parameters:	the	
session	variable	name	and	its	initial	value.	

In	the	rare	case	where	you	need	more	space	for	the	value	specified	for	a	Directive,	
you	may	specify	a	trailing	back	slash	symbol	\	and	the	SQL	iQuery	Script	processor	
continues	the	directive	onto	the	next	line,	swallowing	the	backslash	itself.	The	first	
non-blank	character	on	the	subsequent	line	is	inserted	where	the	backslash	was	
located.	For	example:	

#msg Sometimes a message can exceed the length of the source line. \
When it does, adding a backslash to the end will continue that \
Statement onto the next line.

SQL	iQuery	Script	Built-in	Functions	

There	are	a	number	of	built-in	functions	available.	These	can	be	used	on	assignment	
or	conditional	statements.	They	help	with	typical	programming	tasks	such	as	
locating	or	transforming	data	in	a	variable	or	retrieving	system	information.	Most	
are	inline	functions,	but	some	perform	runtime	routines	and	return	a	value.		

Built-in	 Description	
sst(value,	start,	len)	 The	classic	Substring	function.	The	SST	function	extracts	a	

substring	value	and	passes	it	to	the	resulting	parser.	If	you	
use	the	native	SQL	SUBSTR	function	instead,	then	it	itself	is	
passed	to	the	parser	and	not	processed	by	SQL	iQuery	
Script.	

findfirstOf('character	list',	variable)	
firstOf	
find_first_of	

Returns	the	location	of	the	first	position	in	the	2nd	
parameter	of	any	of	the	characters	specified	on	the	first	
parameter.	e.g.,	&Pos	=	findFirstOf(',	-:',	&partNo);	

32	

Built-in	 Description	
findfirstNotOf('character	list',	
variable)	
firstNotOf	
find_first_not_of	

Returns	the	location	of	the	first	position	in	the	2nd	
parameter	that	does	not	match	at	least	one	of	the	
characters	specified	on	the	first	parameter.		
e.g.	&start	=	findFirstNotOf('	*',	&partNo);	

getCookie('cookie	name')	 Retrieve	a	Web/CGI	Cookie	of	the	name	specified.	The	
entire	value	of	the	cookie	is	retrieved.	

getCWD()	
getCurDir()	

Retrieve	the	current	directory	for	the	job.	The	result	is	the	
IFS	path	that	the	job	is	using	as	the	current	working	
directory.	

getHomeDir()	 Retrieve	the	current	user's	home	folder/directory.		
trimRight('value',	length	or	
character)	

Trims	the	value	or	Session	Variable	contents	based	on	the	
2nd	parameter.		
If	parameter	2	contains	one	or	more	quoted	characters,	
then	those	characters	are	removed	from	the	right-end	of	
the	Session	variable.	
If	parameter	2	contains	a	numeric	value	(length)	the	
Session	Variable	content	is	truncated	to	that	length.	
If	parameter	2	is	not	specified	(omitted)	then	blanks	are	
assumed	and	the	Session	Variable's	content	has	any	trailing	
blanks	removed.	

trimLeft('value',	'chacter(s)')	 Trim	the	leading	(left	side)	characters	(specified	on	the	2nd	
parameter)	from	the	value	specified	on	the	first	parameter.	
If	only	one	parameter	is	specified,	then	blanks	are	removed.	

usrspc(qualified_user_space,	start,	
length)	

Retrieve	data	from	the	qualified	User	Space	(*USRSPC)	
name	(first	parm).	The	start	positions	(parameter	2)	and	
optional	length	(parameter	3)	may	be	specified	to	refine	the	
location	of	the	data	be	retrieved.	If	the	start	is	omitted	the	
entire	user	space	content	is	retrieved.	If	the	length	is	
omitted,	then	the	data	returned	is	from	the	start	location	
through	the	end	of	the	user	space.	
The	user	space	object	name	is	specified	as:	
			library/userSpace	

getsysval('system	value')	 Retrieve	System	Value.	The	system	value	specified	on	the	
first	parameter	is	returned.	

getsrlnbr()	 Retrieve	the	system	serial	number	
getenv('env	variable')	 Retrieve	a	Job-level	Environment	Variable's	value	
getsysenv('env	variable')	 Retrieve	a	System-level	Environment	Variable's	value.	
msgid(msgid,	msgfile,	msgdata,	1	|	2)	 Retrieve	message	text	(MSGID)	returns	the	1st	or	2nd-level	

message	text	for	the	specified	MSGID.	It	inserts	the	message	
data	(3rd	parameter)	into	the	result.	If	no	message	data	is	
needed	but	the	2nd-level	text	is	desired,	pass	a	quoted	
string/blank	for	the	3rd	parameter	and	2	for	the	fourth	
parameter.	
The	message	ID	is	a	7-position	quoted	message	ID.	
The	message	file	(MSGFILE)	parameter	is	a	qualified	or	
unqualified	*MSGF	object	name,	such	as	'QSYS/QCPFMSG'	
or	simply	'QCPFMSG'.		
&warning = msgid('CPF3741','qcpfmsg');

33	

Built-in	 Description	
getfile('ifs	stream	file	name')	 Read	contents	of	IFS	file,	substituting	any	embedded	

Session	Variables.	The	getfile()	function	reads	an	IFS	file	
and	scans	it	for	any	embedded	Session	Variables.	If	it	
detects	any	it	replaces	those	session	variable	names	with	
the	content	of	the	session	variable.	This	is	helpful	for	things	
like	email/mail-merge	applications	or	HTML	loading	where	
you	want	to	populate	the	HTML	"template"	with	certain	
data.		

Fkey(keyID)	 Checks	the	environment	to	see	if	the	corresponding	Fn	key	
was	pressed	to	return	control	to	the	Script.	This	is	used	by	
SQL	iQuery	Script	Prompting	only	and	does	not	function	
with	other	interfaces.	

toAscii(value)	 Converts	the	value	from	the	job	CCSID	to	CCSID	1208	and	
returns	it	to	the	target	session	variable.	

toEBCDIC(value)	 Converts	the	value	from	ASCII	to	the	job's	CCSID,	such	as	37	
for	North	America.	The	conversion	is	based	on	the	CCSID	of	
the	JOB	when	SQL	iQuery	was	started.		

dtaara(qualified_data_area,	start,	
length)	

Retrieve	data	from	the	qualified	Data	Area.	The	first	
parameter	is	the	data	area	name	(qualified	or	unqualified)	
followed	by	(2nd	parameter)	the	starting	position	within	
the	data	area	and	the	number	of	bytes	to	retrieve	(3rd	
parameter).		
If	the	start	is	omitted	the	entire	data	area	is	retrieved.	If	the	
length	is	omitted,	then	the	data	returned	is	from	the	start	
location	through	the	end	of	the	data	area.	

CompNoCase(value1,	value2)	 Compares	the	two	parameter	values	using	case-insensitive	
logic.	Returns	true	of	a	match	is	detected,	otherwise	it	
returns	false.	

scan(pattern,	searched-value)	
scani(pattern,	searched-value)	
find(pattern,	searched-value)	
findi(pattern,	searched-value)	

The	scan	and	find	functions	scan	parameter	2	for	the	value	
specified	on	parameter	1	and	return	the	location	if	found,	or	
0	if	not	found.	
The	SCANI	and	FINDI	function	do	the	same	thing	but	using	
case-insensitive	logic.	

chkLiblE('library1	library	2...',	1	|	
0)	

The	CHKLIBLE	function	scans	the	library	list	of	the	job	for	
the	library/libraries	specified	and	if	found,	returns	a	non-
zero	value.		
When	parameter	2	is	specified	as	1,	(find	all)	and	multiple	
library	names	are	specified	on	parameter	1,	then	all	of	the	
library	names	must	exist	or	0	is	returned.		

strlen(variable)	 The	STRLEN	function	returns	the	length	of	the	content	of	
the	Session	Variable	specified	as	its	one	and	only	
parameter.	The	content	length	omits	trailing	blanks	on	the	
right-side.	

isDDE(variable)	 After	a	successful	SELECT	INTO,	a	host	variable	may	have	
had	a	Decimal	Data	Error	(DDE).	Use	ISDDE	to	check	if	that	
field	received	a	DDE	by	the	SQL	engine.	

isNULL(variable)	 After	a	successful	SELECT	INTO,	a	host	variable	may	have	
been	set	to	NULL	by	the	SQL	engine.	Use	ISNULL	to	
determine	if	that	host	variable	was	set	to	NULL.	

34	

Built-in	 Description	
split(variable,	'split-characters')	 The	SPLIT	function	scans	the	value	(1st	parameter)	for	any	

of	the	split-characters	(2nd	parameter)	and	returns	the	
data	up	to	that	point.	It	then	reduces	the	value	size	by	
removing	the	retrieved	content.	A	subsequent	SPLIT	to	the	
same	session	variable	will	return	the	next	value	and	so	on.		
Use	this	function	to	spilt-apart	or	parse	the	contents	of	the	
variable	that	contains	a	delimited	list	of	values.		
Here's	an	example	the	splits	up	a	3-part	job	name:	

#define &userJob = *JOB_NAME;
while (strlen(&userJob) > 0);
 &token = split(&userJob, '/');
 #MSG &TOKEN
endwhile;
return;

elems(variable)	 The	ELEM	or	ELEMS	function	counts	the	number	of	array	
elements	in	a	Session	Variable	Array	(SVA).	SVAs	are	
created	when	a	SELECT	INTO	results	in	multiple	resultSet	
rows	being	returned	at	once.	For	example,	if	the	FOR	5	
ROWS	ONLY	or	the	LIMIT	5	is	used,	then	the	target	host	
variables	will	receive	up	to	5	values	from	the	resultSet.	That	
causes	each	of	the	Session	Variables	of	the	INTO	clause	to	
be	converted	into	Session	Variable	Arrays.	The	individual	
array	elements	may	be	accessed	using	standard	C/C++	
array	syntax:			&varArr[index]	where	index	is	a	literal	or	
another	session	variable.	

toUpper(variable)	
toLower(variable)	

The	TOUPPER	and	TOLOWER	functions	returns	the	
converted	contents	of	the	session	variable	(parameter	1)	to	
all	upper	or	all	lower	case.	The	input	variable	(parameter	1)	
is	not	altered	by	these	functions.	
e.g.,	IF	(toLower(&part)	=	'sdm');	

xLate('from-characters',	'to-
characters',	variable)	

The	XLATE	function	is	similar	to	the	RPGIV	%XLATE	built-
in	function;	it	translates	each	character	of	the	session	
variable	in	parameter	3	by	scanning	parameter	3	for	any	of	
the	list	of	characters	specified	on	parameter	1,	and	
converting	them	to	the	character	in	the	corresponding	
position	in	parameter	2.		

encodeXML(variable)	 The	ENCODEXML	function	escapes	each	of	the	5	XML	
reserved	symbolic	characters	to	the	HTML	escape	pattern.	
For	example,	the	&	(ampersand)	symbol	is	translated	to	
&		
The	5	symbols	required	by	XML	to	be	escaped,	include:		

1. & => &	
2. " => "	
3. ' => '	
4. < => <	
5. > => >	

encodeURL(variable)	 The	ENCODEURL	function	escapes	any	symbol	in	the	
variable	(parameter	1)	that	is	required	to	be	escaped.	It	
escapes	these	characters	by	converting	them	to	Hex	and	
adding	the	percent	sign	(%)	prefix.	If	a	blank	is	
encountered,	it	is	converted	to	a	plus	sign.		

35	

Built-in	 Description	
editCode(variable,	edit-code)	
editC(variable,	edit-code)	

The	EDITCODE	and	EDITC	functions	edit	a	numeric	value	
specified	on	the	first	parameter	using	the	single-character	
edit	code	specified	on	the	second	parameter.	For	example:	
#define &Credit = -1024.25
Eval &eCredit = editc(&credit, 'J');
Results in &ECREDIT = '1,024.25-'	

editWord(variable,	edit-mask)	
editW(variable,	edit-mask)	

The	EDITWORD	and	EDITW	functions	edit	the	numeric	
value	using	the	edit	mask	specified	on	the	2nd	parameter.		
#define &SALES = 1200.50
&eSales = editw(&sales, '$, 0, . -');
Results in &ESALES = $1,200.50-	

isEmpty(variable)	
isNotEmpty(variable)	

The	ISEMPTY	function	returns	true	if	the	session	variable	
specified	on	parameter	1	either	does	not	exist	or	exists	and	
contains	no	data	or	contains	only	blanks	("is	empty").	
The	ISNOTEMPTY	function	returns	true	if	the	session	
variable	exists	and	contains	data.	

isBatch()		 Returns	true	if	the	SQL	iQuery	Script	is	being	run	as	a	batch	
job	on	the	system.		

isInter()	
isInteract()	

Returns	true	if	the	SQL	iQuery	Script	is	being	run	in	an	
Interactive	job.	

isWeb()	 Returns	true	if	the	SQL	iQuery	Script	is	being	run	as	an	
HTTP	job	from	a	CGI	call	from	a	web	browser	or	similar.	

isBrowser()	 Returns	the	HTTP	User	Agent	that	evoked	the	SQL	iQuery	
script	as	a	CGI	job.	The	web	browser	information	is	
returned.	Use	this	function	to	copy	that	information	into	a	
session	variable	or	to	scan	for	specific	browser	Authors,	
such	as	WebKit,	Microsoft,	etc.		

isNum(variable)	 Returns	true	if	the	session	variable	contains	only	numeric	
values,	0	to	9,	the	decimal	notation,	the	status	(i.e.,	the	
minus	sign)	and	the	thousands	separator.	

isDigits(variable)	 Returns	true	if	the	session	variable	contains	all	numeric	
digits	0	to	9	only.	

isAlpha(variable)	 Returns	true	if	the	session	variable	contains	only	alphabetic	
characters:	A-Z	or	a-z	

isChar(variable)	 Returns	true	if	the	session	variable	contains	any	alphabetic	
characters,	numbers	(0	to	9)	or	blanks.	If	any	symbols	are	
detected,	such	as	%	#	@,	etc.	it	returns	false.	

isAlphaNum(variable)	 Returns	true	if	the	session	variable	contains	any	alphabetic	
characters	or	any	digits	(0	to	9)	

toHex(variable)	 Returns	the	2-character	hexadecimal	representation	for	
each	single	character	in	the	session	variable	(parameter	1).	
For	example:	
Eval &hexVal = toHex('12345');
Results in &HEXVAL = 'F1F2F3F4F5'	

checkObjType(variable)	 Returns	true	if	the	IBM	i	object	type	in	parameter	1	is	a	
valid	object	type.	It	does	this	by	attempting	to	convert	the	
symbolic/external	object	type,	such	as	*FILE	or	*PGM,	to	
the	internal	MI	object	type.	If	that	conversion	fails,	the	
object	type	is	considered	invalid	and	returns	false.	This	
provides	the	best	support	to	future-proof	your	code.	

36	

Built-in	 Description	
chkObjExists(object,	object-type)	 Returns	true	if	the	IBM	i	object	(parameter	1)	of	the	type	

specified	on	parameter	2	exists.	For	example,	to	check	if	the	
object	QCUSTCDT	exists	use	this	statement:	
IF chkObjExist('qiws/qcustcdt',*FILE);
To	check	to	see	if	a	specific	source	member	in	a	file	exists,	
use	*MBR	as	the	object	type	and	enclose	the	member	name	
in	parens:	
IF chkObjExist('coztools/qrpglesrc(cpytocsv)',*MBR);

cpybytes(target	var,	source	var)	 The	CPYBYTES	function	copies	the	content	of	the	source	

variable	(parameter	2)	to	the	target	variable	(parameter	1)	
directly.	Normally	a	simple	eval/assignment	is	used	to	copy	
session	variables.	However,	when	a	complex	session	
variable,	such	as	an	array	or	LOB	(when	it	contains	the	
content	of	an	IFS	file),	then	it	is	sometimes	easier	to	use	the	
CPYBYTES	function	to	replicate	the	variable	entirely.	

	

In	addition	to	this	list	of	built-in	functions,	all	available	scalar	SQL	built-in	functions	
as	well	an	any	add-on	scalar	SQL	functions	may	be	used	in	SQL	iQuery	control	
statements.	They	may	not	be	used	on	the	EVAL	assignment	statement	but	may	be	
used	on	VALUES	INTO	instead	of	the	EVAL	opcode.		For	example,	the	licensed	
program	named	SQL	Tools	(2COZ-ST2)	ships	with	an	EOMDATE	scalar	function	that	
returns	the	end	of	month	date.	It	can	be	used	directly	on	an	IF	statement,	as	follows:	

01) IF (current_date = sqlTools.EOMdate());
02) Include prodlib/qsqlsrc(monthEnd);
03) else;
04) Include prodlib/qsqlsrc(daily);
05) endif;

Line	1	illustrates	the	scalar	function	EOMDATE	(an	SQL	Tools	function).	If	the	
current	date	is	equal	to	the	end-of-month	date,	then	the	MONTHEND	SQL	iQuery	
Script	source	member	is	included.	If	it	isn't	month-end,	then	the	DAILY	source	
member	is	included.	

SQL	iQuery	Script	Commands	

SQL	iQuery	Script	support	several	commands	or	opcodes	to	perform	various	tasks.	
Commands	are	terminated	with	a	semicolon	and	may	span	multiple	lines.		

37	

Command	 Description	
EVAL	&var	=	value	or	expression	 The	EVAL	opcode	is	the	classic	assignment	statement	in	

SQL	iQuery	Script.	The	left	side	of	the	equals	sign	is	the	
target	variable,	while	the	right-side	contains	either	another	
variable,	a	literal/string,	or	any	mathematical	expression	
such	a	&A	*	&B,	or	any	SQL	scalar	function.		
The	EVAL	opcode	itself	is	optional	as	of	SQL	iQuery	version	
7.	
In	some	conditions	the	SQL	VALUES	INTO	statement	may	be	
better	suited	than	the	built-in	EVAL	opcode,	but	that's	a	
decision	for	the	specific	circumstances.		

return;	 The	RETURN	opcode	returns	to	the	"caller".	That	is	it	ends	
the	current	SQL	iQuery	script	and	returns	to	the	prior	script	
(when	using	nested	scripts)	or	returns	to	the	RUNiQRY	
command	processing	program.	Effectively	ending	the	
current	script	immediately.	

ftp	<ftp	command>	<parameters>;	 The	FTP	opcode	can	be	used	to	setup	a	list	of	objects/files	
to	be	sent	via	FTP	and	then	send	those	objects.	The	
maximum	number	of	source	lines	generated	to	an	FTP	
script	cannot	exceed	32760.		
The	parameters	are	standard	FTP	commands	and	their	
parameter	values.	For	example,	to	create	a	directory	on	a	
target	system,	you	might	specify:		
FTP MK /home/query;
To	send	a	file:	
FTP CD /home/query;
FTP PUT /home/workfolder/mydata.txt;
More	on	this	topic	is	coming	in	a	future	document.	
Then	to	run	the	script:	
FTP connect CHICAGO FTPUSER 'rosebud';
FTP RUN;
More	on	this	topic	is	coming	in	a	future	document	update.	
	

CONNECT	to	<rmt>	user	<user>	using	
<pwd>;	

The	classic	SQL	CONNECT	TO	statement	is	integrated	into	
iQuery	script.	Specify	it	as	you	would	any	other	CONNECT	
TO.	Note	that	to	reset	the	connection	you	use	CONNECT	
RESET;	

savestmf	<ifs	file>,	variable,	ccsid;	 Saves	the	session	variable	content	to	the	IFS	file.	If	the	IFS	
file	does	not	exist,	it	is	created	using	the	CCSID	parameter's	
CCSID.	If	no	CCSID	parameter	is	specified	it	defaults	to	
CCSID(1208).	If	the	IFS	file	already	exists,	it	is	cleared,	then	
the	session	variable's	content	replaces	any	existing	data.		
Use	the	APPENDSTMF	command	to	add	data	to	an	existing	
IFS	file.	

appendStmf	<ifs	file>,	variable,	ccsid;	 Writes	the	content	of	the	session	variable	to	the	end	of	an	
existing	stream	file.	If	the	stream	file	does	not	exist,	it	is	
created.		

writeStmf	<ifs	file>,	variable,	ccsid;	 Writes	the	content	of	the	session	variable	to	the	stream	file.	
If	the	stream	file	exits,	the	data	is	added	to	the	end	of	the	
file.	If	the	file	does	not	exist,	it	is	created	first,	and	then	the	
data	is	written	to	it.		

PRINT	BEFORE(column,	data...)	 Write	the	data,	starting	in	the	column	specified,	above	the	
output	resultSet.	Valid	for	print	and	Excel	output	only.	

PRINT	AFTER(column,	data...)	 Write	the	data,	starting	in	the	column	specified,	below	the	
output	resultSet.	Valid	for	print	and	Excel	output	only.	

38	

Command	 Description	
Print	BEFORE	|	AFTER	(start-
column,	argument1,	arg2...);	

The	PRINT	command	may	be	used	to	write	addition	text	
information	before	or	after	the	Result	Set.	It	is	often	used	to	
add	additional	information	after	the	list	of	rows	that	a	
SELECT	statement	returns.	Use	the	PRINT	command	
followed	by	the	AFTER()	or	the	BEFORE()	keyword.	Then	
within	the	parens,	specify	the	starting	column	in	the	result	
followed	by	the	text	to	be	added.	Note	that	this	was	
originally	created	for	EXCEL-based	output,	but	now	also	
works	with	printed	output.		
PRINT after(3,'Confidential. Do not distribute');
This	prints	the	text	after	the	result	set,	starting	in	column	3	
(column	C	in	Excel).	See	PRINT	Command	elsewhere	in	the	
document	for	more	information	and	additional	examples.	

	

The	PRINT	Command	

The	PRINT	command	provides	supports	to	include	additional	text	in	the	output.	
Originally	written	to	provide	a	way	to	embed	information	after	the	resultset	rows	in	
EXCEL	output,	it	was	expanded	to	work	with	printed	output	as	well.	

Syntax:	

PRINT after(<starting-column>, output-text,output-text2...);

The	PRINT	command	supports	the	AFTER	or	BEFORE	keywords.	When	BEFORE	is	
used	the	text	appears	before	(above)	the	result	set,	when	AFTER	is	used,	the	text	
appears	below	(after)	the	result	set.		

Parameter	1	must	contain	a	number	greater	than	0	that	represents	the	starting	
EXCEL	column	into	which	the	text	specified	on	parameter	2	is	written.		

Parameter	2	and	beyond	contain	quoted	text	strings	that	are	written	to	the	output	
starting	at	the	column	specified	in	parameter	1.	Each	time	a	parameter	marker	is	
encountered	(parameter	marker	is	a	comma)	the	text	in	the	next	parameter	is	
written	out	to	the	subsequent	column.	For	example,	below	the	works,	RED,	WHITE	
and	BLUE	are	written	to	columns	3,	4	and	5	respectively:	

PRINT AFTER(3,'RED','WHITE','BLUE');

In	place	of	text	parameters,	you	may	also	specify	an	EXCEL-based	Style	for	the	text.	
The	STYLE	keyword	is	used	to	accomplish	this.	For	example.	Suppose	you	wanted	
the	output	text	to	be	BLUE	instead	of	the	default	color.	The	STYLE	keyword	along	
with	the	Excel	formatting	code	may	be	used	as	follows:	

PRINT AFTER(3, style(color: blue), 'Hello World');

39	

The	style	keyword	accepts	MS	Excel	style	attributes	using	a	format	substantially	
similar	to	that	of	HTML	CSS.	That	is	the	Attribute	name	followed	by	a	colon	
followed	by	the	attribute.	Multiple	attributes	are	separated	from	one	another	with	a	
comma.	

PRINT AFTER(3, style(color:blue, rotate: 45,fontsize:18), 'Hello World');

It	is	up	to	the	user	to	know	the	Excel	styles	and	their	syntax.	Embedding	an	
incorrect	style	or	using	the	wrong	style	format	will	result	in	Excel	issuing	an	error	
and	potentially	failing	to	open	the	Spreadsheet.	Be	sure	to	test	the	scripts	before	
providing	end-users	with	the	results.		

40	

CODING	EXAMPLES	
When	creating	an	SQL	iQuery	Script,	you	frequently	need	to	test	the	result	of	the	
prior	SQL	statement.	SQL	iQuery	Script	supports	the	&SQLSTATE	session	variable.	
It	can	be	used	to	test	the	SQL	state	after	each	SQL	statement.	For	example,	if	you	
wanted	to	extract	the	operating	system's	technology	refresh	level,	you	might	query	
the	GROUP_PTF_INFO	View	that	is	located	in	the	QSYS2	library:	

01) -- Get IBM i Technology Refresh Level into &TR
02) SELECT PTF_GROUP_LEVEL
03) INTO :TR
04) FROM QSYS2.GROUP_PTF_INFO
05) WHERE PTF_GROUP_DESCRIPTION = 'TECHNOLOGY REFRESH'
06) AND PTF_GROUP_STATUS = 'INSTALLED'
07) ORDER BY PTF_GROUP_TARGET_RELEASE DESC,PTF_GROUP_LEVEL DESC
08) LIMIT 1;
09)
10) if (&SQLState >= '02000' or isEmpty(&TR));
11) eval &TR = 0;
12) endif;
13) #msg TR Level &TR

The	SQL	SELECT	statement	that	begins	on	line	2	and	continues	through	8	attempts	
to	retrieve	the	IBM	i	operation	system	technology	refresh	level.	On	line	10,	
&SQLSTATE	is	checked	for	the	infamous	'02000'	state.	If	&SQLSTATE	is	02000	or	
higher,	then	the	assumption	is	that	no	TR	level	was	retrieved,	and	the	&TR	session	
variable	is	set	to	0.	

The	next	step	in	this	script	is	to	check	that	the	OS	release	level	and	&TR	level	are	at	
least	at	level	9	(for	V7R3)	or	3	(for	V7R4)	variable	for	something	useful.	In	our	case,	
we	want	to	check	the	TR	level	of	the	system	before	attempt	to	include	the	
PROTECTION_STATUS	column	from	the	SYSDISKSTAT	View.	IBM	added	
PROTECTION_STATUS	late	in	V7R4	and	backported	it	to	V7R3.	To	check	that,	an	
#IF	statement	directly	inserted	into	the	SELECT	query	and	controls	the	inclusion	of	
the	PROTECTION_STATUS	column,	as	follows:	

41	

14) SELECT ASP_NUMBER as "ASP",
15) UNITNBR as "Drive Number",
16) DISK_TYPE as "Disk Unit Type",
17) DISK_MODEL as "Disk Model",
18) CASE WHEN UNIT_TYPE = 1 THEN 'SSD'
19) WHEN UNIT_TYPE = 0 THEN 'HDD'
20) ELSE '???' END
21) as "Drive Type HDD/SSD",
22) UNITMCAP as "Drive Capacity",
23) UNITSPACE as "Drive Free Space",
24) PERCENTUSE as "Percentage Used",
25)
26) #IF defined(*V7R5) or \
27) (defined(*V7R3) and &TR >= 9) or \
28) (defined(*V7R4) and &TR >= 3)
29) PROTECTION_STATUS
30) #else
31) 'Feature NOT Avail'
32) #endif
33) as "Status",
34) CASE WHEN MIRRORPS is NULL THEN 'NOT Mirrored'
35) WHEN MIRRORPS = '0' THEN 'Inactive'
36) WHEN MIRRORPS = '1' THEN 'Mirrored'
37) END as "Mirrored",
38) CASE WHEN MIRRORUS is NULL THEN ' '
39) WHEN MIRRORUS = '1' THEN 'Paired'
40) WHEN MIRRORUS = '2' THEN 'Syncing'
41) WHEN MIRRORUS = '3' THEN 'Suspended'
42) END AS "Mirrored Status"
43) FROM QSYS2.SYSDISKSTAT;

Line	13	begins	the	SELECT	query	of	the	SYSDISKSTAT	View	(see	line	41).	Then	on	
line	25	the	#IF	statement	is	used	to	test	for	the	IBM	i	operation	system	being	on	
V7R3	TR9,	V7R4	TR3	or	V7R5	or	later.	If	it	is	not,	then	a	constant	of	"Feature	Not	
Avail"	is	produced	instead	of	the	drive	protection	status.	

Remember	the	#	(pound	sign,	which	has	a	contemporary	nomenclature	of	hashtag)	
alters	the	IF	condition	so	it	can	be	directly	embedded	in	an	SQL	statement.	When	
and	#IF	statement	is	embedded	like	this,	it	is	used	to	include	or	omit	portions	of	the	
SQL	statement.	Without	the	hashtag	prefix,	the	SQL	iQuery	Script	processor	would	
concatenate	the	IF	statement	with	the	SQL	statement	and	produce	a	syntax	error.		

Let's	look	closer	at	that	embedded	#IF	condition	portion	of	the	above	script.	

42	

01) #IF defined(*V7R5) or \
02) (defined(*V7R3) and &TR >= 9) or \
03) (defined(*V7R4) and &TR >= 3)
04) PROTECTION_STATUS
05) #else
06) 'Feature NOT Avail'
07) #endif

Line	1	uses	the	DEFINED()	built-in	function	to	check	if	the	figurative	constant	
*V7R5	is	defined.	If	it	is,	then	IBM	i	V7R5	or	later	is	installed,	and	we're	good.	Note	
that	since	this	condition	need	a	bit	more	space,	I've	continued	it	to	lines	2	and	3	
using	the	trailing	backslash,	as	mentioned	earlier.		

If	*V7R5	is	not	defined,	then	it	checks	for	*V7R3	at	TR9	or	later,	or	for	*V7R4	and	
TR3	or	later.	If	either	condition	is	met,	then	the	PROTECTION_STATUS	column	is	
included	in	the	resultSet.	If	none	of	the	conditions	are	met,	then	the	literal	'Feature	
NOT	Avail'	is	inserted	instead	of	the	PROTECTION_STATUS	column.		

Note: SQL Tools QDISK View and DISK_LIST Table function return the
Protection_Status column starting with V7R2. They may be used as an alternative to the
IBM-supplied SYSDISKSTAT View.

Before	running	the	SQL	SELECT	statement	that	produces	the	DISK	Drive	Status	
Report,	you	may	want	to	include	header	information	and	change	some	output	
attributes.	To	do	that,	we	could	add	the	following	4	lines	of	code	to	the	previous	
SQL	iQuery	Script.	

01) #H1 My Company Corp.
02) #H2 *MACRO - Script
03) #H3 Disk Drive Status Report
04) #colEdit 6,7

Lines	1,	2,	and	3	add	Report	header	lines	to	the	output.	Output	formats	that	do	not	
support	headings	will	ignore	the	#Hx	directives.	

• #H1	is	the	company	name	–	a	convention	most	SQL	iQuery	Customers	have	
adopted.		

• #H2	contains	the	figurative	constant	*MACRO	that	inserts	the	Source	File	
Member	name	into	the	heading.		

• #H3	contains	the	report	title.	

43	

Line	4	uses	the	#COLEDIT	(edit	numeric	columns)	directive	to	identify	the	columns	
that	should	have	standardized	numeric	editing	applied.	In	this	example,	the	Disk	
Capacity	and	Space	Available	are	identified	as	columns	6	and	7	respectively.	You	
could	have	also	used	the	column	names,	but	that	can	be	confusing	since	SQL	will	use	
the	correlation	name	as	the	column	name	in	most	situations.		

The	results	of	this	query	would	look	something	like	the	following:	

	

